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The problem of the stability of the periodic motion of a non-linear periodic Hamiltonian system is considered in the case of 
pure imaginary characteristic exponents which also satisfy several fourth-order resonance conditions. Conditions for stability 
and instability are formulated based on terms of the third order inclusive. Some conclusions generalize results obtained previously 
[1]. © 1999 Elsevier Science Ltd. All rights reserved. 

Consider the problem of  the stability of a stationary point of a Hamiltonian system of equations with 
Hamiltonian H(x, y, t) = HE + H3 + • • . ,  where/-/1 are t h e / t h  order forms in the variables x = 
(xl . . . . .  xN) andy = 0'1, • • • ,Y~) with coefficients which are periodic in t with period co. We will assume 
that all characteristic exponents ks = itOs of the linear part of the corresponding canonical system of 
equations are pure imaginary and different, and in addition satisfy several simultaneous relationships 
of  internal fourth-order resonance 

(p,f~) = 2 ~ - I q ;  q =0,+1,+2 .... (1) 

and there are no resonances of order less than four. Here p is an n-vector whose components are 
relatively prime integers, not all simultaneously zero, IPl I +, • • •, + [P ,  I = 4 and f2 = [ co~, . . . ,  o), ] is 
the vector of  characteristic exponents (1 ~< n ~< N). 

The case of  double resonance of the form (1) for autonomous systems was considered previously in 
[1], where sufficient conditions were obtained for a model system (i.e. a system containing terms of 
order  up to and including three) to be stable. 

The aim of  this paper is to extend those results to periodic systems and to consider new types of 
resonance that arise only in periodic systems. Throughout what follows it will be assumed that the form 
//2 has already been reduced to canonical form 2/-/2 = 0)l(X 2 + y20+ . . .  +co#(x~ + y2N); as we know 
[2], this is always possible. 

We will first consider the case in which all resonances (1) are independent (that is, do not contain 
common exponents). Suppose there are Ix resonance relations, each containing nv (v = 1 . . . . .  Ix) 
exponents, so that 

(Pv,t)v)=27tto-lq~; qv = 0,-+1,:1:2 .... ( v = l  ..... ~t) (2) 

where Pv =lPm~_~+t . . . .  , l, ['~v =1 ~mv_l+l . . . .  , Omv l; in these relations, no = 0 

ni+. . .+n t t=n<~N,  m v = n l + . . . + n  v, a IlPvll=lpmv_j+ll+ ..... +lPm v 1 = 4  

We know [3-5] that in the case of a single resonance (1) the initial system may be reduced, by a 
polynomial canonical transformation with periodic coefficients, to normal form in which there are no 
terms of even order, while the terms of odd order do not contain the time t, The same result may be 
achieved in the case of  multiple resonance (2). In specially chosen polar coordinates ~, 0j [5], the 
normalized part (up to terms of the fourth order inclusive) of the Hamiltonian takes the form 

N 
2H= g toj~ +2H 4 (3) 

j = l  

tt N 

Y Av. - cosvv+ X Rv =Xp,,o,, 
v=l i , j= l  
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where the subscript tz in the sums and products takes all values from m~-i + 1 to m~, where m,,_~ = 
r t  1 + . . .  + / I v -  1. 

The normal form obtained here is identical with that presented previously [1] for p -- 2. In addition, 
representation (3) does not exclude the presence of "single-frequency" resonances (2) (i.e. corresponding 
to n~ -- 1), which are impossible in the autonomous case. 

As in [1], we will call a resonance weak if, in the absence of other resonances, it does not cause the 
model system to be unstable; otherwise, we will call it strong. 

It is easy to prove the following theorem for the trivial solution of the model system corresponding 
to Hamiltonian (3). 

Theorem 1. If at least one of resonances (2) is strong, the trivial solution of the model system is unstable. 
Suppose the resonance with v = "/in (2) is strong. The, equating all ~ in the canonical system for the 

Hamiltonian (3) to zero, except those for whichj = my 1 + 1, , m ,  we obtain a system of equations . . . . . .  - . . . .  ~, . . . .  
descnbmg a muaUon w~th one resonance, for which, by assumpUon, the trivial solutton ~s unstable. Hence 
it follows that the trivial solution of the entire initial system is also unstable. 

The case in which all resonances are weak is more complicated. One must then make a distinction 
between two types of weak resonance: A--weakness  of a resonance due to changes of sign among the 
components of  the resonance vector pv (in that case, stability in any finite order [3]), and B---all 
components of the resonance vector Pv are of the same sign, and the weakness of each resonance is 
due to the inequalities 

Iav I<1Sv I ( v = l  ..... IX); Sv=(T.A~pctpfl)/(2~v), Pv = rlp * 

The subscripts a and 13 in the sums and products take all values from rnv_l + 1 to m~, where mv-i = 
n I + . . .  + n v _  1. 

Theorem 2. Suppose there is no single-frequency resonance in the system and all resonances are weak 
in senseA. Then the trivial solution of the model system corresponding to the Hamiltonian (3) is stable. 

In that case the model system corresponding to Hamiltonian (3) has a sign definite integral 

N 

: ~'. yir/= const, Yi : const > 0 
i=1 

Indeed, the requirement that the derivative it, should vanish identically along trajectories of the model 
system implies the identity 

P 

0 = - 2  • Av~vsinYv(~'yapa)nO 
v = l  

which may hold only provided that Z~/apQ = 0 (the subscript ct takes all values from mv-~ + 1 to my, 
v = l  . . . . .  p). 

The equations obtained for,/a always have a strictly positive solution if there is a change of sign among 
the numbersp~, and so ¢, is indeed a positive definite integral, proving that the model system is stable. 

The case of weak resonances in sense B is more complicated. 

Theorem 3. Suppose all p resonances in the system are weak and some of them are weak in sense B. 
Then the trivial solution of  the model system corresponding to the Hamiltonian (3) is stable if there 
are no changes of sign among the quantities Si (i = 1 , . . . ,  m) and qi = O. 

Without loss of generality, we will assume that the first k resonances are weak in sense A and all the 
others in sense B. In that case the system has the following integrals 

I N 
~P= ~, yjrj+ ~, 'Yi~ (l--n1+--.+nk) 

j = l  i : n + l  

ls=~ P~srmv_l+! (s  = mv- i  + 2  . . . . .  mv,  v = k + l  . . . . .  P)  (4)  
Pray_ 1 +t 

p N 

v= l  i , j=l  
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from which we construct another integral (summation over s is performed according to (4)) 

which is sign definite. Indeed, for rj = ri = O, r s = Pj/Pmv_t+ffn~_~+l, we have 

P" r~v_ +1 
• =t,=0, H4=2 Z ~4~-~(A~cosO~+SO 

v=k+l Pmv-I +1 

and hence, taking into account that the resonances are weak in sense B and that there are no changes 
of sign among Sv(v = k + 1 . . . . .  Ix), we verify that G is a positive definite function. 

Corollary 1. Suppose all Ix resonances in the system are weak and only one of them is weak in sense 
B. Then the trivial solution of  the model system corresponding to Hamiltonian (3) is stable. 

We will now consider the case of the interaction of resonances associated with one frequency. Suppose 
there are Ix resonance relations, each containing n~(v = 1 . . . . .  Ix) exponents, so that 

P~¢°o + ( P v , f i v )  = 2 r ~ ° - t q v ;  qv = 0,:l:l,:l=2 . . . .  ( v  = 1 . . . . .  p )  (5) 

where p~ = I Pmv-t + 1 . . . . .  Pmv I, gay = IOamv_~+l,. l; it is assumed here that no 0, nl + +no n 
~< N, m~ = nl + . . .  +n~ and IP* I + II P~ II = JlS (Om~ = . . .  = 

In specially chosen polar coordinates rj, Oj [5], the normalized part (up to terms of fourth order 
inclusive) of the Hamiltonian takes the same form as (3) 

N 
2H = Z tojt) + 2 H  4 (6) 

j=l  

P /V ° 
H 4 "" ~ .  A v ~ " v  c o s Y v  "1- ~7. A0r//~, R v = - I p v l r l - l p a l  "0 Al'ct , 

v=l i,j=l 
Yv = p~Oo + )". p~,O= 

This normal form is identical with that presented previously [1] for Ix = 2. 
It can be verified that Theorem 1 holds for the trivial solution of a model system corresponding to 

Hamiltonian (6). 
If there is interaction of  weak resonances that contain one common frequency, the situation turns 

out to be more complicated than in the case of independent resonances. In that case the sufficient 
conditions for stability yield the following theorems. 

Theorem 4. Suppose all resonances are weak in senseA. Then the trivial solution of the model system 
corresponding to Hamiltonian (6) is stable. 

The proof  is again based on the existence of a sign definite integral 

N 
= 5". ¥iri = const 

i=O 

where Ti are positive constants. Indeed, the requirement that the derivative ~ '  should vanish identically 
implies the identity 

P 

Vffil 

which may hold only provided that Z %Pa + Y0P* = 0 (the subscript a takes all values from mv-1 + 1 
to m~-i + my, v = 1 . . . . .  Ix). 

These equations for '/a always have a strictly positive solution if there is a change of sign among the 
numbers pQ, p*, and therefore • is indeed a positive definite integral, proving that the model system 
is stable. 

The case in which the resonances are weak in sense B is more complicated. 
Let 

S~v = ~ ,~ ,  Cijpip j ( j = m v _  ! +! ..... ntr, i f m v _  I +i  ..... my) 
i j 
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T h e o r e m  5. Suppose all Ix resonances in the system are weak and some of them are weak in sense B. 
Then the trivial solution of the model system corresponding to Hamiltonian (6) is stable if there is no 
change of sign among the quantities Si, Sij (i = 1 , . . . ,  Ix - k ,  j = 1 . . . . .  Ix - k ) ,  but there is a change 
of sign among the components of the resonance vector Pv corresponding to weak resonance in sense 
A, and qi = O. 

Without loss of generality, we will assume that the first k resonances are weak in sense A and the 
others in sense B. The system will have the following integrals 

I N 

~ = ~  T s r , +  ~, 7iri ( l = n l + . . . + n k )  
s=l  i=n+l 

l j = / ~ - -  PJ rmv_l . t  ( j = m y _ l + 2  . . . . .  m ~ , v = k + l  . . . . .  It) (7) 
Pmv_t +1 

lsj ro Ps rm~. I +l P J 
= - -  - rm~_j+l (9=1 ..... k , v = k + l  ..... IX) 

Pm~_ I +l Pray_ I +l 

P N 
H4 = E A v ~ v  cOSYv + • A~rarl~ 

v=l  a ,~=l  

from which we construct the following integral (summation over the subscripts s andj  is performed in 
accordance with (7)) 

which is sign definite. Indeed, if 

r s=5  =0, = pj  IPmv_=+lrmv_l+l, ro = pj IPnv_l+lr.v_l+l 

we have 

• = i .  =o 

Jr2 ] ~ .  _ m u _ l +  I r ' - - -  IA rm~_l+lrmv_l+l 
H4 = - -  2 " ~ - ' - - - 4 P , ( A ~ c ° s O ~ + S ~ ) +  E Swo 

~ffik+l pm~_l +l vffik+l Pmt~.l+lPmv_l+l 
( v ~ u )  

and hence, taking into account that the resonances are weak in sense B and that there are no changes 
of sign among Su, S~o (t~ = k + 1 . . . . .  IX, v = k + 1 . . . . .  IX), we verify that G is a positive definite function. 

Corollary 2. Suppose all IX resonances in the system are weak in sense B. Then the trivial solution of 
the model system corresponding to Hamiltonian (6) is stable if there is no change of sign among the 
quantities Si, Sij (i = 1 . . . .  , n , j  = 1 . . . . .  n )  and qi = O. 

Consider the case in which the common component of a multiple resonance is a single-frequency 
resonance. Then the following theorem is true. 

T h e o r e m  6. If a single-frequency resonance is weak, all other resonances are weak in sense B and 
there is a change of sign among the components of the resonance vector Pv corresponding to weak 
resonance in sense A, then the trivial solution of the model system is stable. 

Note that the system has integrals 

l N 
=~-  7.,q + ~ yiri ( l = n j + . . . + n  k) 

,~=1 i=n+ l  

Pj 
/ j  = o - roo  ~ r,.~_,+t 

Pmv-t +1 

( j  = m _j + 9_ ..... %,  v = k + 1 . . . . .  Ix, = - 4 A o r o  2 c o s ( 4 e o  -  Oo)) 
(8) 

la N 

H 4 = ~ A v ~ v  cOSVv + T. Aasrars +Aoro2sin(40o -q~o) 
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from which we can construct the following integral (summation over the subscript j is performed in 
accordance with (8)) 

which is sign definite. Indeed, if rs = ri  = O, ro = roo, we have 

¢ =  lj =0, H 4 =ro~(Aosin(4Oo-tPo)+Coo) 

and hence, taking into account that the single-frequency resonance is weak (i.e. Coo > A0), we verify 
that G is a positive definite function. 
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